ITPA protein, an enzyme that eliminates deaminated purine nucleoside triphosphates in cells.

نویسندگان

  • Kunihiko Sakumi
  • Nona Abolhassani
  • Mehrdad Behmanesh
  • Teruaki Iyama
  • Daisuke Tsuchimoto
  • Yusaku Nakabeppu
چکیده

Inosine triphosphate pyrophosphatase (ITPA protein) (EC 3.6.1.19) hydrolyzes deaminated purine nucleoside triphosphates, such as ITP and dITP, to their corresponding purine nucleoside monophosphate and pyrophosphate. In mammals, this enzyme is encoded by the Itpa gene. Using the Itpa gene-disrupted mouse as a model, we have elucidated the biological significance of the ITPA protein and its substrates, ITP and dITP. Itpa(-/-) mice exhibited peri- or post-natal lethality dependent on the genetic background. The heart of the Itpa(-/-) mouse was found to be structurally and functionally abnormal. Significantly higher levels of deoxyinosine and inosine were detected in nuclear DNA and RNA prepared from Itpa(-/-) embryos compared to wild type embryos. In addition, an accumulation of ITP was observed in the erythrocytes of Itpa(-/-) mice. We found that Itpa(-/-) primary mouse embryonic fibroblasts (MEFs), which have no detectable ability to generate IMP from ITP in whole cell extracts, exhibited a prolonged population-doubling time, increased chromosome abnormalities and accumulation of single-strand breaks in their nuclear DNA, in comparison to primary MEFs prepared from wild type embryos. These results revealed that (1) ITP and dITP are spontaneously produced in vivo and (2) accumulation of ITP and dITP is responsible for the harmful effects observed in the Itpa(-/-) mouse. In addition to its effect as the precursor nucleotide for RNA transcription, ITP has the potential to influence the activity of ATP/GTP-binding proteins. The biological significance of ITP and dITP in the nucleotide pool remains to be elucidated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning, expression, and characterization of a human inosine triphosphate pyrophosphatase encoded by the itpa gene.

ITP and dITP exist in all cells. dITP is potentially mutagenic, and the levels of these nucleotides are controlled by inosine triphosphate pyrophosphatase (EC ). Here we report the cloning, expression, and characterization of a 21.5-kDa human inosine triphosphate pyrophosphatase (hITPase), an enzyme whose activity has been reported in many animal tissues and studied in populations but whose pro...

متن کامل

Pivotal Role of Inosine Triphosphate Pyrophosphatase in Maintaining Genome Stability and the Prevention of Apoptosis in Human Cells

Pure nucleotide precursor pools are a prerequisite for high-fidelity DNA replication and the suppression of mutagenesis and carcinogenesis. ITPases are nucleoside triphosphate pyrophosphatases that clean the precursor pools of the non-canonical triphosphates of inosine and xanthine. The precise role of the human ITPase, encoded by the ITPA gene, is not clearly defined. ITPA is clinically import...

متن کامل

Measuring deaminated nucleotide surveillance enzyme ITPA activity with an ATP-releasing nucleotide chimera

Nucleotide quality surveillance enzymes play important roles in human health, by detecting damaged molecules in the nucleotide pool and deactivating them before they are incorporated into chromosomal DNA or adversely affect metabolism. In particular, deamination of adenine moiety in (deoxy)nucleoside triphosphates, resulting in formation of (d)ITP, can be deleterious, leading to DNA damage, mut...

متن کامل

Elevated Levels of DNA Strand Breaks Induced by a Base Analog in the Human Cell Line with the P32T ITPA Variant

Base analogs are powerful antimetabolites and dangerous mutagens generated endogenously by oxidative stress, inflammation, and aberrant nucleotide biosynthesis. Human inosine triphosphate pyrophosphatase (ITPA) hydrolyzes triphosphates of noncanonical purine bases (i.e., ITP, dITP, XTP, dXTP, or their mimic: 6-hydroxyaminopurine (HAP) deoxynucleoside triphosphate) and thus regulates nucleotide ...

متن کامل

Identification of the dITP- and XTP-hydrolyzing protein from Escherichia coli.

A hypothetical 21.0 kDa protein (ORF O197) from Escherichia coli K-12 was cloned, purified, and characterized. The protein sequence of ORF O197 (termed EcO197) shares a 33.5% identity with that of a novel NTPase from Methanococcus jannaschii. The EcO197 protein was purified using Ni-NTA affinity chromatography, protease digestion, and gel filtration column. It hydrolyzed nucleoside triphosphate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mutation research

دوره 703 1  شماره 

صفحات  -

تاریخ انتشار 2010